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Abstract-In this paper it is shown, that the partial nonlinear differential equation can be reduced to the 
variational problem. By means of the variational technique based on the Kantorovich method, a nonlinear 
boundary value problem can be reduced to the set of the ordinary differential equations. The accuracy 
of the method is estimated by comparing the solutions of problems solved using the variational method 
and the other method. In this paper the method for the construction of the trial functions is also presented. 

Three examples are included to illustrate the above method. 

NOMENCLATURE 

T temperature; 

c, specific heat ; 
1, conductivity of solid; 

K heat sources; 

4, heat-transfer rate per unit area; 

6 coefficient of heat transfer; 

7, time; 

F, surface of the considered body. 

1. INTRODUCTION 

AT THE present time the majority of the heat-transfer 
problems are to be solved by use of variational calculus. 
The main reason for this is that the variational 
approach considerably reduces the number of calcula- 
tions without decreasing the accuracy of the results. 
The existing variational solutions, involving the un- 
steady heat flow with the heat sources, have been 
obtained using simplified mathematical models. It has 
been done by the assumption that the thermal pro- 
perties are considered to be constants. This simplified 
problem is shown in [2-S]. 

A similar assumption may be found in [8]. The heat- 
transfer problems, with the thermal properties being 
temperaturedependent can be found in recent literature, 
for instance, in the papers given by Biot [ll], Djukic 
and Vojanovic [9]. 

Biot has expressed the heat flow problem in a quasi- 
variational form using the concept of thermal potential, 
dissipation function and generalized thermal forces. 
The characteristic of Biot analysis is that, the varia- 
tional integral does not exist, thus, this principle is the 
Galerkin concept rather than the variational one. 

Djukic and Vojanovic have expressed the problem 
as a variational principle of Hamiltonian type. It is 
worth noticing that the above considerations are not 
coyrect, because they do not preserve all the rules of 
variational calculus. Introducing the parameter I, 
which tends to zero after the process of variation is 

completed, causes the variational integral not to corres- 
pond to the initial differential equation. Also the initial 
condition is not pointed out in the paper [9]. Due to 
that, the proposed method may be treated as of Biot’s 

type. 
The formulation described in the present paper satis- 

fies the conditions ncessary for the existence of an 
extremum of variational integral. The approximate 
solution is found by use of Kantorovich method 

This method is based upon the assumption that the 
parameters Ai of the function 7’,‘,((, 5, q, t), being the 
approximate solution of the form 

are unknown functions of the time T at the first stage of 
the consideration and have to be determined at the next 
stage from the relevant set of the ordinary differential 
equations. Such a solution is, in general, much more 
accurate than that obtained by the classical Ritz 
method with the same set of trial functions and the 
same number of parameters Ai. 

Improved accuracy is achieved owing to the fact that 
the class of the functions used for the solution is of much 
more general form, than the class of the function in the 
case of the “pure” Ritz method. 

The application of the more general mathematical 
model will enable us to extend the variational method 
for the case of a number of engineering problems con- 
cerning nuclear reactors, chemical apparatus etc. 

2. BASIC EQUATIONS AND THE VARIATIONAL 
PRINCIPLE 

2.1. Thejrstform of variational integral 
We shall be concerned with a solid body with heat 

sources, the intensity of which is W(T) and is a known 
function of the temperature. The coefficient of heat 
conduction is assumed to be a function of the 
temperature. 
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The similar assumption involves the specitic heat 
C(T). It will also be assumed that the total surface F 
of the body is a sum of the component surfaces and the 

different boundary conditions are prescribed on 
different component surfaces. 

The temperature field in the region considered is 

determined by the following differential equation of 

parabolic type: 

div[i.(T)grad T]+ W[T] = C(T).? 
(75 

(1) 

the boundary conditions on the component surfaces 
are: 

[T-7&, = 0. t > 0 (2) 

i(T).;+II(T) 1 =o, r>O (3) 
F> 

F i(T).‘T+n(rm_ Td”) 
if1 1 =o. r>O (4) 

5 
and the initial condition: 

T = T,(<,r/,i), r = 0. (5) 

KRAJEwSKI 

and it thus completes the proof. 
It can easily be shown that this integral has a mini- 

mum, because the Legendre condition 

= 1,’ > 0, 

is satisfied, where 

Z. = G (grad T)’ - 
s 

T 

W(9). l(9). d9 
70 

s T 

C(9).1(9).d3 
TO 

and 

It will be shown that the equation (1) together with the boundary conditions (24) and initial condition (5) 
can be reduced to the variational problem 

iT 
where -z = F(x. ~1. z. t) To - reference temperature 

and (T-7J’dV 

verify the validity of this relation, let us write the first variation of the expression (6) that is 

6Y(T) = (gradT)Z./1(T).w(T).6T+12(T).gradT.grad6T-W(T).3.(T).6T 

+;.C(T)%T)+T]dVjdr+ j;{ jr>[q(T)~~(T).~T]dP}di+ j;{ j/[(T--Tm)A(T)+T]dF}dr 

+ jV[(T-TJ6T],=odV = 0 (7) 

where W(T) = $. 

Then applying of the Gauss-Ostrogradsky relation we find: 

i(T).n.grad T+cc(Tm-Tam) 1 I i(T),GT.dF dr 

+jv[(~-W']~;=odV=O (8) 
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It is seen directly that the first integrand of equation 
(8) is obtained from the differential equation (1) and the 
remaining integrands from the boundary conditions 
(334), and from initial condition (5). 

In order to increase the accuracy of the computation, 
the trial functions should be so selected that the 
boundary conditions are satisfied. It enables to reduce 
the relevant surface integrals. In the considered case we 
restrict the variation in such a way that 6T/F1 = 0. 
When the thermal properties are of the form: 

A = A,(<, rl, i) .1,(T) 

C = C,(Ls>i).Cz(T) 

@‘= w,(;,?,I). wZ(T) 

4 = qi(L I, i). qz(T) 

(9) 

the similar equation, as equation (8), may be derived 
from the variational principle. 

It can shown, that in the case of nonlinear partial 
differential equation both formulation-the Galerkin 
and variational one-reduces the problem to the system 
of ordinary differential equation. The systems have 
different form and are depending upon the method to 
be used. It should be noted that in the linear case the 
Galerkin method will yield the same results as varia- 
tional method. 

boundary condition (2-5) may be expressed in another 
form. This is of particular use in the case of the 
Neumann problem. In the subsequent considerations, 
we shall assume that the differential equation (1) has 
the boundary condition expressed by equation (3) only. 

Introducing a new function expressed by relation: 

(10) 

where 

9=T-To 

we obtain 

0 = H(9). (11) 

It is assumed that there exists the inverse function 

9 = F(O). (12) 

Substituting it into (1) (3) (5) we obtain 

lodiv(gradO)+WIF(0)] = C[F(O)]. a%y (13) 

2.2. The second form of variational integral 
In many engineering problems the variational 

integral related to the differential equation (1) and 

In this case the variational integral may be written in the form: 

r>O k,~+q[F(O)] F = 0, 

F(O) = FP(0). T = 0. 

(14) 

(15) 

C[F(w)].dw dV dr I> 
[F(O)-F,]~=,~dV = minimum (16) 

where 

aF 
z = G(x, Y, z, r) 

The first variation 6 Y of the relation (16) is given by 

aF(O) 
iograd@~gradSO-W[F(0)]~60+~~C[F(O)]~60 1 I dV dr 

[F(O)-F,]60 .dV = 0. (17) 
t=o 

Then, applying the Gauss-Ostrogradsky relation, we have 

6Y(O) = ---~CIF(0)]-lodiv(gradO)-WIF(O)] 1 I 60.dV dz 

f + SM 0 F 
Io.n.gradB+q[F(el]]dB-dF}d~+~v~~F(B)-F,ldV = 0. (18) 
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It can be easily shown that the functional (16) satisfies 
the Euler and Legendre conditions for a minimum. 

In technical problems the function l(3) may be 

written in the following form 

Using relation (10). we find 

@=+ “(&-l.,ro)dm=3-$J2 
s 

(20) 
0 0 0 

in this case the inverse function is of the form 

,922(l-J[l-y). (21) 

3. COMPUTATlON FLOW. PARTIAL SOLUTIONS 

In the subsequent consideration, we shall describe 
the computation procedure by the Kantorovich 

method. 
In this method it is assumed that the approximate 

solution is a linear combination of sequence of 

functions: 

x=iAi(r)‘qi(<,?J,i) [i=O,l,..,, n]. (22) 
0 

The function cpi(&q,[) is assumed as a known, where 

Ai are undetermined functions of a single variable T. 
The selection of the trial functions qi is, of course, 

the crucial point in any procedure of this type. It is up 
to the ingenuity of the analyst to construct the trial 
function so that a maximum of information can be 
extracted with a minimum of computation. 

In order to overcome this difficulty we shall follow 
the method suggested in [S]. 

The basic idea consists in dividing the initial problem 

described by equation (1) into N sub-problems. The 
sub-problems are expressed by the set of the partial 

differential equations of the elliptical type. 

div (grad T) = f A,,,,1 ‘5”. II”. i’ 
m.n,1=0 

[m. n, I= 1,2. .., N]. (23) 

where the right hand sides of equation (23) express the 
power series of the location variables. The power series 
may contain undetermined coefficients A,,.,i to be 
obtained later from the relevant set of differential 
equations. 

To obtain partial solutions, we proceed as follows: 
the first partial solution we get solving the equation (23) 
with the first term of power series, that is m = n = I = 0, 
and with the nonhomogeneous boundary conditions. 
The next partial solution can be obtained using the 
second term of power series and taking the homo- 
geneous boundary condition. In this fashion it is 
possible to obtain as many partial solutions as is 

desired. The substitution of this partial solution into 

equation (8) and the subsequent integration will yield a 
set of first-order ordinary differential equations. The 
system of ordinary differential equations have certain 

initial values, which corresponds to initial condition 
expressed by equation (5). 

4. ESTIMATION OF THE INITIAL VALUES 

In the subsequent consideration we shall describe the 

computation procedure to find the initial values for a 
set of ordinary differential equations. 

In our case the method for obtaining the initial values 
consists in minimizing the functional: 

s [T,- T,]‘.dV = minimum. (24) 
F 

The right minimum is zero and yields the solution. 
When the preceding technique is set up for a nonlinear 

problem, we get a set of nonlinear algebraic equations 
for obtaining the initial values. 

The true roots are selected by means of the principle 
of minimum. Then if several approximate solutions are 
available, the corresponding values for minimum may 
be used as a basis for comparison: if the value of 

minimum is lower then the approximation is better. 

5. NUMERICAL EXAMPLE 

As a numerical example illustrating the computation 

procedure, let us consider the problem of unsteady heat 
conduction in an infinite plate of thickness 6, the initial 

temperature being zero. Because of the bounding 
planes, 5 = 0 is insulated and the temperature of the 
other 5 = 1 is constant in time T > 0 and equal to 1. 

This problem will be solved in approximate manner 
in several variants, and the results will be compared. 

In the case of the approximate solution procedure or, 
more precisely, in the case of the estimation of the trial 

function, we can apply the procedure described in the 
previous section. 

We shall assume that the coefficient of temperature 

conduction is dependent upon the temperature accord- 
ing to the relation 

h’= tiO(l-tirQ) (25) 

where x0, xi = const. 
The heat equation, valid in the region considered, has 

the form 

the boundary conditions 

(27) 

and the initial condition 

3p(5,0)=o, O<<<l. F,=O. (28) 
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5.1. Galerkin method a set of the first order ordinary differential equations: 

In the Galerkin method, it is assumed that the 

approximate solution has the form 
1. -~(~-~~,)A,-:(~-K~)A~-~K~A~-~KA~A~ 

9,= 1+A9(52-1)+Ar(53-l). 
-~~A:-&kl,,-&~~ = 0, 

(29) 
(31) 

The approximate solution, being composed of two 
terms, is obtained using the procedure described in 

2. -~(~-K~)A~-~(~-K~)A~-~A~-~K~A~A, 

Section 3 (vide also [S]). -$&iIA:-&,-&A1 = 0. 

Making use of the Galerkin method, we obtain the We can find the initial values for a set of ordinary 
relation differential equations minimizing the functional: 

[; r$ - $[(l-fc18n)$]}C%i~d< = 0 

s 
’ [9,-#,“)]2~d[ = minimum (32) 

O [i =O,lI (30) where 

where 9,(O)= 1+Ao(0)(~2-1)+A1(O)(~3-l). 

68, = $A0 = (t2 - 1)6Ao 
0 

6x!& = +A, = (<‘- 1)6A1, 
1 

A,(O) = - 3.4608; 

A,(O) = 4.30719. (33) 

The substitution of the approximate solution into The numerical results are represented in Table 1 and 

equation (30) and the subsequent integration will yield Fig. 1. 

Table 1 

K 

0 
0 
0 
0 
0 
0 
0 

0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 

0.20 

0.30 

FO 

0.01 
0.02 
0.05 
0.10 
0.20 
0.40 
1.00 
0.01 
0.02 
005 
0.10 
@20 
0.40 
1 .oo 

0.01 0~1000 0.0783 0.1051 -00340 -0.0837 -0.1016 -0.0675 00393 02392 0.5526 
0.02 0.0630 0.048 1 0.0140 -0.0228 -0.0465 -0.0405 0.0112 0.1250 0.3168 0.6032 
0.05 0.0138 0.0117 0.0110 0.0193 0.0447 0.0951 0.1785 0.3027 0.4758 0.7055 
0.10 0.0405 oQ470 0.0679 01053 0.1611 0.2375 0.3365 04603 0.6107 0.7899 
0.20 01934 0.2024 0.2288 0.2722 03320 04075 0.4981 0.6032 0.7224 0.8548 
0.40 0.4650 0.4716 0.4908 0.5219 0.5839 0.6160 0.6775 0.7474 0.8251 0.9095 
1 ,oo 0.8412 0.8432 0.8493 0.8588 0.8720 0.8879 0.9064 0.9273 0.9500 0.9744 

0.01 
002 
0.05 
0.10 
0.20 
0.40 
1.00 

0.1 

0.0940 0.0733 0.0244 -0.0330 -0.0787 - 0.0931 - 0.0564 0.0515 0.2503 0.5599 
0.0530 0.0397 0.0102 -0.0207 -0.0377 - 0.0256 0.0306 0.1462 0.3362 06157 
@0019 OQO26 00087 0.0265 0.0622 0.1219 02121 0.3386 05081 0.7264 
0.0413 0.0504 0.0777 0.1237 0.1887 0.2732 0.3775 0.5020 0.6470 0.8129 
0.2220 0.2326 0.2621 D3092 0.3723 0.4499 0.5405 0.6424 0.7540 08737 
0.5232 0.5296 05483 0.5779 0.6175 0.6658 0.7218 07844 0.8524 0.9246 
0.8915 0.8930 0.8972 09040 0.9130 0.9240 0.9367 0.9510 0.9664 0.9829 
0.0970 0.0758 0.0258 -0.0335 -0.0812 -0.0974 -0.0619 0.0454 0.2447 0.5562 
0.0580 0.0439 0.0121 -0.0218 -0.0420 -0.0330 0.0210 0.1356 0.3265 0.6094 
0.0082 0.0076 0.0102 0.0234 0.0540 0.1092 0.1959 0.3213 0.4924 0.7163 
O+l404 0.0482 0.0725 0.1144 @1751 0.2557 0.3576 0.4817 06294 0.8018 
0.2075 0.2167 0.2459 0.2909 0.3526 0.4295 0.5202 0.6238 0.7391 08649 
0.4941 0.5007 0.5197 0.5503 0.5913 0.6418 0.7006 0.7669 0.8396 0.9176 
0.8683 0.8701 0.8752 0.8833 0.8942 0.9075 0.9229 0.9401 0.9590 0.9790 

0.1040 0.08 18 0.0289 -0.0336 -0.1188 -01051 -0.0724 0.0337 @2339 0.5491 
0.0680 0.0522 0.0159 -0.0241 -00510 -DO481 oQO13 0.1141 0.3070 0.5967 
@0206 0.0172 0.0127 0.0160 0.0360 0.0815 01613 0.2841 0.4590 0.6947 
0.0417 0.0468 0.0640 0.0963 0.1468 0.2185 0.3144 0.4375 0.5908 0.7773 
0.1807 0.1888 0.2131 0.2537 0.3107 03841 0.4740 0.5805 0.7036 0.8434 
0.4360 04424 0.4615 04925 05348 0.5882 0.6519 07256 0.8085 0.9001 
0.8098 0.8123 0.8194 0.8306 0.8460 0.8648 @8868 0.9117 0.9391 0.9687 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

1 ,oOOO 
1 .oOOO 
1.0000 
1 .oOOO 
l~OOcM3 
1 .oooO 
1~0000 
1~0000 
1~0000 
1 ~OOOil 
1 ~OOOil 
1.0000 
1 ,oOOO 
1 .oOOO 

1.0000 
1.0000 
l+lOCO 
1.0000 
1.0000 
1QOOO 
1~0000 

10000 
1~0000 
1 .oooo 
1 .oOQo 
1.0000 
l+lOOO 
1.0000 
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The initial values are obtained in a similar way as in 
Section 5.1, that is 

i 
’ [3,-9,]‘d< = minimum 

A,(O) = - 3.4608; 

0 A,(O) = 4.30719. 

The numerical results are represented in Table 2. 

5.3. Variational method. The second fbrm of variational 
integral 

In the third variant of our problem, the relations 
derived in Section 2.2 will be used. 

Substituting in (26) the relation (21), we obtain the 

heat equation in the region considered in the form 

E- 

FIG. I. The temperature distribution in the flat plate (Galer- 
kin method). 

5.2. Variational method. The ,jrst ,Jorm of’ variational 
integral 

the boundary conditions 

In this case, we obtain the relations following the (38) 

existence of an extremum of the variational integral 

$iCzO=O, @i<=i = 1-: 

considered 
and initial condition 

~~~~“1~~-~~(l-ti~~~)~~111-11181) 0,(5,0)=0,0~~~1,F,=0. (39) 

x (igi.d< = 0 [i = 0, 11 (34) The approximate solution, being obtained using the 

where procedure described in Section 3, has the form 

The approximate solution has the same form as in 
equation (29). 

Making use of equation (34), a similar computation 

is carried out as in Section (5.1), yielding the set of 
differential equations 

1. &-A,(1 -K,)+&i(l-K,)Al+til 

x [~~AoA,+*Aok, S$$iAoA1 +gAIA,] 

+~Ao(l-K,)2+~~~(1-K~)2+ti~(l-K,) (35) 

x [+$4;+J$40A, +$#I 

+~:[~.A~A,+~AoA:+~.A~+~.A:]=O; 

2. &A,(1 -K,)i-&.A,(1 -ti,)+li, 

x [&&4,+&&A, +~~&A, +&A, A,] 

+~Ao(l-~,)2+~A,(I-IC,)2+IC,(1 -Kl) 

x [$4:,+*A”A, +&4:] 

+K:[~A&dl +~‘.fi:~o+~.&+~~:] = 0. 

(36) 

0, = 1-F +Ao(~2-1)+‘4i(~3-l). (40) 
( > 

Making use of the relation (18), we obtain 

where 

[i = Cl] (41) 

The initial values for a set of ordinary differential 
equations can be obtained as follows: 

1 

J K 1 -J(1-2K10”) 
I > 

e2 - 1) 

0 Fo=O 'Jf1-2k.1WFo=0 I 1 
.di’=O (42) 

1 

J K 1 -&1-2Kl@“) 
0 

.dt = 0. (43) 

The numerical results are represented in Table 3 and 
Fig. 2. 
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Table 2 

c 
Kl FO 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 @9 1 .oo 

0.02 
@OS 

ICI = 0.1 
0.10 
0.20 
0.40 
1.00 

0.02 
0.05 

ti1 = 0.2 
0.10 
0.20 
0.40 
1.00 

0.02 
DO5 

K, = 0.3 
0.10 
0.20 
0.40 
1 ,oo 

0.0580 0.0438 0.0117 - 0.0224 - 0.0430 - 0.0343 0.0195 0.1341 0.3253 0.6086 
0.0085 0.0077 0.0101 0.0228 0.0530 0.1077 0.1942 0.3196 0.4909 0.7153 
0.0406 0.0484 0.0724 01140 0.1744 0.2548 0.3564 0.4805 06283 0.8011 
0.2072 @2169 0.2450 0.2904 0.3521 0.4289 0.5197 0.6233 0.7386 0.8640 
0.4939 05005 0.5195 0.5501 0.5910 0.6415 0.7004 0.7667 0.8394 0.9175 
0.8683 0.8700 0.8751 0.8833 0.8941 0.9074 0.9229 0.9401 D9590 0.9790 

0.0633 @0482 0.0138 -0.0235 - 0.0475 - 00420 oGO95 0.1231 0.3152 0.602 1 
0.0148 0.0126 0.0113 0.0190 00438 00936 0.1765 0.3006 0.4738 07043 
0.0409 0.0472 0.0678 0.1047 0.1601 0.2361 0.3348 0.4584 0,609 1 0.7889 
0.1931 0.2020 02284 0.2716 0.3312 0.4066 0.497 1 0.6023 0.7215 0.8543 
0.4645 @4711 0.4903 0.5213 0.5633 0.6155 06770 0.7470 0.8247 0.9093 
0.8411 0.843 1 0.8492 0.8589 0.8718 0.8878 0.9063 0.9272 0.9499 0.9743 

0.0683 0.0524 00159 -0.0244 -0.0517 -0.0491 Om01 0.1128 0.3058 0.5959 
0.0211 0.0175 0.0126 0.0155 0.0350 0.0800 01594 0.2822 0.4573 0.6936 
0.0420 0.0469 0.0639 00959 0.1460 0.2174 0.3130 0.4360 0.5894 0.7764 
0.1805 0.1886 0.2128 0.2532 @3100 03833 0.4732 0.5796 D7029 0.8430 
0.4357 04421 0.4611 0.4920 0.5344 0.5877 0.65 15 0.725 1 08081 0.8999 
0.8097 0.8122 0.8192 0.8306 0.8458 0.8646 0.8867 0.9116 0.9390 09688 

1 ,oo 
1GO 
1 ,oo 
1.00 
1.00 
1.00 

1 .oo 
1 .oo 
1 .oo 
1 .oo 
1.00 
1 .oo 

1.00 
1 ,oo 
1QO 
1 .oo 
1.00 
l@O 

Table 3 

0.0 0.1 @2 0.3 0.4 0.5 @6 0.7 0.8 0.9 1 ,oo 

0.02 
0.05 

ICI = 0.1 
0.10 
0.20 
0.40 
1 .oo 

@02 
0.05 

K, = 0.2 
0.10 
0.20 
0.40 
1 .oo 

00595 0.0456 0.0139 -0.0201 -00414 - 0.0347 0.0150 0.1240 0.3098 0.593 I 
0.0067 0.0064 0~0100 0.0238 0.0545 01087 0.1933 0.3158 0.4845 0.7088 
0.0384 0.0466 00715 0.1140 0.1751 0.2556 03569 0.4802 0.6272 0.7998 
0.2063 0.2161 0.2445 0.2903 0.3523 0.4292 0.5200 0.6236 0.7389 0.8647 
0.4943 0.5009 0.5201 0.5507 0.5917 0.642 1 0.7009 0.767 1 0.8397 0.9177 
0.8700 0.8717 0.8767 0.8848 0.8955 0.9086 0.9239 0.9409 0.9595 0.9793 

0.0642 0.0498 0.0168 -0.0195 -0.0438 -@0416 00024 0.1047 0.2849 05697 
00097 OGO87 0.0103 0.0208 0.0472 DO963 0.1755 0.2935 0.4605 06897 
0.0354 0.0428 0.0655 @lo48 0.1620 0.2385 0.3364 0.4580 0.6064 07853 
01908 0.2002 0.2275 0.2719 0.3323 04081 04987 0.6035 0.7222 0.8545 
0.4665 0.4732 0.4926 0.5238 D5659 0.6180 0.6793 0.7489 0.8261 09101 
0.8480 0.8500 0.8558 0.8651 08775 0.8928 0.9105 0.9304 0.9522 0.9755 

1 .oo 
1 .oo 
1 .oo 
1 ,oo 
10l 
1.00 

1.00 
1 ,oo 
1.00 
1 ,oo 
1 .oo 
1 .oo 
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FIG. 2. The temperature distribution in the fat plate (the 
second form of variational integral). 

6. FINAL REMARKS 

Usually the unsteady heat flow problems are con- 
sidered by the assumption that the thermal properties 
are constant. This assumption has been omitted in the 

present paper. 
It has been shown that this type of problem can be 

treated as a variational problem. Two different forms 
of the variational integral have been constructed. The 

choice of a suitable form is dependent upon the 
boundary conditions. The calculation flow has been 
illustrated on the basis of three numerical examples. 
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