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Abstract—In this paper it is shown, that the partial nonlinear differential equation can be reduced to the

variational problem. By means of the variational technique based on the Kantorovich method, a nonlinear

boundary value problem can be reduced to the set of the ordinary differential equations. The accuracy

of the method is estimated by comparing the solutions of problems solved using the variational method

and the other method. In this paper the method for the construction of the trial functions is also presented.
Three examples are included to illustrate the above method.

NOMENCLATURE
T. temperature;
¢, specific heat;
A, conductivity of solid;
W, heat sources;
q. heat-transfer rate per unit area;
o, coefficient of heat transfer;
T, time;
F, surface of the considered body.

1. INTRODUCTION

AT THE present time the majority of the heat-transfer
problems are to be solved by use of variational calculus.
The main reason for this is that the variational
approach considerably reduces the number of calcula-
tions without decreasing the accuracy of the results.
The existing variational solutions, involving the un-
steady heat flow with the heat sources, have been
obtained using simplified mathematical models. It has
been done by the assumption that the thermal pro-
perties are considered to be constants. This simplified
problem is shown in [2-5].

A similar assumption may be found in [8]. The heat-
transfer problems, with the thermal properties being
temperaturedependent can be found in recent literature,
for instance, in the papers given by Biot [11], Djukic
and Vojanovic [9].

Biot has expressed the heat flow problem in a quasi-
variational form using the concept of thermal potential,
dissipation function and generalized thermal forces.
The characteristic of Biot analysis is that, the varia-
tional integral does not exist, thus, this principle is the
Galerkin concept rather than the variational one.

Djukic and Vojanovic have expressed the problem
as a variational principle of Hamiltonian type. It is
worth noticing that the above considerations are not
correct, because they do not preserve all the rules of
variational calculus. Introducing the parameter A,
which tends to zero after the process of variation is
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completed, causes the variational integral not to corres-
pond to the initial differential equation. Also the initial
condition is not pointed out in the paper [9]. Due to
that, the proposed method may be treated as of Biot’s
type.

The formulation described in the present paper satis-
fies the conditions ncessary for the existence of an
extremum of variational integral. The approximate
solution is found by use of Kantorovich method.

This method is based upon the assumption that the
parameters A4; of the function T,(¢, {, n, 1), being the
approximate solution of the form

S A iEn, O
0

are unknown functions of the time 7 at the first stage of
the consideration and have to be determined at the next
stage from the relevant set of the ordinary differential
equations. Such a solution is, in general, much more
accurate than that obtained by the classical Ritz
method with the same set of trial functions and the
same number of parameters A4;.

Improved accuracy is achieved owing to the fact that
the class of the functions used for the solution is of much
more general form, than the class of the function in the
case of the “pure” Ritz method.

The application of the more general mathematical
model will enable us to extend the variational method
for the case of a number of engineering problems con-
cerning nuclear reactors, chemical apparatus etc.

2. BASIC EQUATIONS AND THE VARIATIONAL
PRINCIPLE

2.1. The first form of variational integral

We shall be concerned with a solid body with heat
sources, the intensity of which is W(T) and is a known
function of the temperature. The coefficient of heat
conduction is assumed to be a function of the
temperature.
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The similar assumption involves the specitic heat
C(T). It will also be assumed that the total surface F
of the body is a sum of the component surfaces and the
different boundary conditions are prescribed on
different component surfaces.

The temperature field in the region considered is
determined by the following differential equation of
parabolic type:

‘T
div[#Tgrad TI+W[T]= ()= (1)
it
the boundary conditions on the component surfaces

are: [T-T]p, =0 >0 2)

T
[A(T)-%Jrqm} =0, 1>0 3)
Rn F,

°T
l:;,(T)-‘,—Jroc(Tm—7;;")]f =0, t>0 (4
n s

and the initial condition:

T=T,n0, t=0. (5)

and it thus completes the proof.
It can easily be shown that this integral has a mini-
mum, because the Legendre condition

¢ [éL 20 ¢ (0L 250
— = ) =A?>0,
A len)

is satisfied, where

/12 T
= -2—(grad T)Z—J W) 4(9)-dI

To
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T
+€IJ C(9)-A(9)-d3

To
and
T_@T T_(’?T T_ﬁT
et ot e

It will be shown that the equation (1) together with the boundary conditions (2-4) and initial condition (5)

can be reduced to the variational problem

=[] Hwmare- | [ coso-asfav}
YT = (grad T)*— W A8)-dI+Fix,v.z,0) | C-A(H-d9 |dV dr
o lJv

,_2_

Ty

t T t T
+j H H q(9)-i(9)-d9}dF}dr+aj U U (9”‘—7},’"),1(.9)~d9:'dF}dt +Z
0 F» To 0 F3 To

T
where =

= F(x,y,z.0

and V4

To

= minimum (6)
t=0

T, — reference temperature

1
=—| (T-T*dV
=0 2 Vv

verify the validity of this relation, let us write the first variation of the expression (6), that is

t

0

YTy = J‘

{J [(grad T)?-MT) - (T) 8T +A*(T)-grad T -grad 6T — W(T)- A(T)- 6T
v

+£'C(T)-1(T)'5T}dV}dt+J U [q(T)-A(T).(ST]dF}dHJ “ a[(T”—T},m)i(T)-éT:\dF}dr
T 0 Fa 0 14

where

wr) =4

+f {(T—T,,)(ST:I V=0 (7)
14 =0

dT’

Then applying of the Gauss—Ostrogradsky relation we find:

SY(T> = f {J ["LT-C(T)—div(uT)-grad T)— W(T)}MT)-&TdV}dr
|4

0 cT

+LH [ﬂ~(T)-n-grad T+Q(T)]2(T)'5T~dF}dt+fl{f I:/I(T)'n'grad T+a(T'"—T;")}A(T).5T.dF}dT
F; o F

o[ [r-mor |

dv=0 (8)
0

=
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It is seen directly that the first integrand of equation
{8) is obtained from the differential equation (1) and the
remaining integrands from the boundary conditions
(3—4), and from initial condition (5).

In order to increase the accuracy of the computation,
the trial functions should be so selected that the
boundary conditions are satisfied. It enables to reduce

boundary condition (2-5) may be expressed in another
form. This is of particular use in the case of the
Neumann problem. In the subsequent considerations,
we shall assume that the differential equation (1) has
the boundary condition expressed by equation (3) only.
Introducing a new function expressed by relation:

the relevant surface integrals. In the considered case we o- 1 e 26)-d 10
restrict the variation in such a way that §T/F; =0. - ,TO 0 ()-dt 10
When the thermal properties are of the form:
A=2&n,0) AAT) where
C=Ci(&n,0)-CaAT) o) I=T-T,
W = Wy(&.1.0)- Wa(T) "
we obtain
q=4:1(.1,0) q2T)
the similar equation, as equation (8), may be derived © = H(). a1
from the variational principle. )
It can shown, that in the case of nonlinear partial It is assumed that there exists the inverse function
differential equation both formulation—the Galerkin
and variational one—reduces the problem to the system 8 = F(©). (12)
of ordinary differential equation. The systems have o i
different form and are depending upon the method to  Substituting it into (1), (3), (5), we obtain
be used. It should be noted that in the linear case the
Qalerkin method will yield the same results as varia-  }/ div(grad @)+ W[F(©)] = C[F(®)] C[FO)] (13)
tional method. T
2.2. The second ft?rm of variational integral . Ao 0® >0 (14)
In many engineering problems the variational on
integral related to the differential equation (1) and
F(®)=F,®). t=0. (15)
In this case the variational integral may be written in the form:
YO = J {J l: (grad ®)2 — J W[F(w)]dw+G(x,y,x, t)f C[F(w)]- dw}dV}dr
t
+J‘ {J [q[F(w)] dw:| }dr+ f [F(©®)-F,]2% 0 dV = minimum (16)
0o F
where
0
~F = G(x,y,2,t)
ot
The first variation 8Y of the relation (16) is given by
' O0F (@)
0Y(®> = iograd('D-gradé@)—-W[F(@)]-5®+6— C[F(©®)] 6@ [dV tdz
0o 14
t
+J {j q[F(©)] '5®'dF}dT+j {[F(@)—F,,] 6@}‘ dV =0. (17)
0 F v t=0
Then, applying the Gauss-Ostrogradsky relation, we have
5Y(®> = J U [aF ©) - C[F(©)]— Ao div (grad ©) — W[ F( @)]:lae dV}d
o 14
t
+J {f [Ao-n-grad®+q[F(®)]:|5®-dF}dr+'( {[F(G))—F,,](S@} dV=0. (18)
o F v t=0
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It can be easily shown that the functional (16) satisfies
the Euler and Legendre conditions for a minimum.

In technical problems the function A(3) may be
written in the following form

AB) = Ap—A 3. (19)
Using relation (10), we find
1 9 ;“1 2
/1() [ 2}.0
in this case the inverse function is of the form
9=@<1—/[1—22}®D. 21)
A Ao

3. COMPUTATION FLOW. PARTIAL SOLUTIONS

In the subsequent consideration, we shall describe
the computation procedure by the Kantorovich
method.

In this method it is assumed that the approximate
solution is a linear combination of sequence of
functions:

T,=Y 4@ p&nd [i=01..n]. (2)
0

The function ¢;(&,#,¢) is assumed as a known, where
A; are undetermined functions of a single variable .

The selection of the trial functions g; is, of course,
the crucial point in any procedure of this type. It is up
to the ingenuity of the analyst to construct the trial
function so that a maximum of information can be
extracted with a minimum of computation.

In order to overcome this difficulty we shall follow
the method suggested in [8].

The basic idea consists in dividing the initial problem
described by equation (1) into N sub-problems. The
sub-problems are expressed by the set of the partial
differential equations of the elliptical type.

N
divigradT)= Y Appi &0

mmn,l=0
[mnl=12...,N]. (23)

where the right hand sides of equation (23) express the
power series of the location variables. The power series
may contain undetermined coefficients A4, ,; to be
obtained later from the relevant set of differential
equations.

To obtain partial solutions, we proceed as follows:
the first partial solution we get solving the equation (23)
with the first term of power series, thatism=n = 1= 0,
and with the nonhomogeneous boundary conditions.
The next partial solution can be obtained using the
second term of power series and taking the homo-
geneous boundary condition. In this fashion it is
possible to obtain as many partial solutions as is

desired. The substitution of this partial solution into
equation (8) and the subsequent integration will yield a
set of first-order ordinary differential equations. The
system of ordinary differential equations have certain
initial values, which corresponds to initial condition
expressed by equation (5).

4. ESTIMATION OF THE INITIAL VALUES

In the subsequent consideration we shall describe the
computation procedure to find the initial values for a
set of ordinary differential equations.

Inour case the method for obtaining the initial values
consists in minimizing the functional:

J [T,— T,]*-dV = minimum. (24)
v
The right minimum is zero and yields the solution.
When the preceding technique is set up for a nonlinear
problem, we get a set of nonlinear algebraic equations
for obtaining the initial values.

The true roots are selected by means of the principle
of minimum. Then if several approximate solutions are
available, the corresponding values for minimum may
be used as a basis for comparison: if the value of
minimum is lower then the approximation is better.

5. NUMERICAL EXAMPLE

As a numerical example illustrating the computation
procedure, let us consider the problem of unsteady heat
conduction in an infinite plate of thickness 8, the initial
temperature being zero. Because of the bounding
planes, £ = 0 is insulated and the temperature of the
other £ = 1 is constant in time 7 > 0 and equal to 1.

This problem will be solved in approximate manner
in several variants, and the results will be compared.
In the case of the approximate solution procedure or,
more precisely, in the case of the estimation of the trial
function, we can apply the procedure described in the
previous section.

We shall assume that the coefficient of temperature
conduction is dependent upon the temperature accord-
ing to the relation
(25)

K=kKo(l—nr¥)

where kg, K1 = const.
The heat equation, valid in the region considered, has

the form
I& a 9) i) 09 26)
— U= | === 2
o¢ 'reE | eF,
the boundary conditions
3
l-é— =0, 9 =1 27)
e =0 E=1
and the initial condition
3,,0=0, 0gég1, F=0. (28)
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5.1. Galerkin method
In the Galerkin method, it is assumed that the
approximate solution has the form

&, = 1+ Ag(E2 1)+ A, (3 - 1). (29)

The approximate solution, being composed of two
terms, is obtained using the procedure described in
Section 3 (vide also [8]).

Making use of the Galerkin method, we obtain the
relation

1089, @ 89, L
L {ﬁFo - 55[“ —KIS,,)E]} 89;-de =0

[i=0,1] (30)
where
a8
890 = —2 84, = (£2—1)64
0= 32, (£ —1)04,
5\91 = 69" 5A1 = (63—1)6A1 .

0A,

The substitution of the approximate solution into
equation (30) and the subsequent integration will yield

a set of the first order ordinary differential equations:
L —3(1—x1)Ao—3(1 —K )4y —Tsic, AT —ErAoA,
~1ak A} ~f54do—124: = 0,
(31)
2. —3(1—kp)Ao—3(1—xy)A; — 5 AF—FbK1 Ao Ay
"%’\'11‘1%'{1/.10-191/‘11 =0.
We can find the initial values for a set of ordinary
differential equations minimizing the functional:

1
J [8,—3©}%-d¢ = minimum (32)
0
where
8,(0) = 1+ Ag(0)(&> — 1)+ 4, (0)(&> - 1).
Hence
Ao(0) = —3-4608;
A(0) = 4-30719. (33)

The numerical results are represented in Table 1 and
Fig. 1.

Table 1
¢
K Fy
00 01 02 03 04 05 06 07 08 09 10

0 001 00940 00733 00244 —0-0330 —0-0787 —0-0931 —0-0564 0-0515 02503 05599 10000
0 002 00530 00397 00102 —0-0207 —0-0377 —0:0256 00306 01462 03362 06157 10000
0 005 00019 00026 00087 00265 00622 01219 02121 03386 (0-5081 07264 1-0000
0 010 00413 00504 00777 0-1237 0-1887 02732 03775 05020 06470 08129 1-0000
0 020 02220 02326 02621 03092 0-3723 04499 05405 06424 07540 0-8737 1-0000
0 040 05232 05296 0-5483 0-5779 06175 06658 07218 07844 0-8524 09246 10000
0 1-00 08915 08930 08972 09040 09130 09240 09367 09510 09664 09829 1-0000
010 001 00970 00758 00258 —0-0335 —0-0812 —00974 —00619 00454 02447 0:5562 1-0000
010 002 00580 00439 00121 —00218 —00420 —0:0330 00210 01356 03265 06094 1-0000
010 005 00082 00076 0-0102 0-0234 00540 01092 01959 03213 04924 07163 1-0000
010 010 00404 00482 00725 01144 01751 02557 03576 04817 06294 08018 1-0000
010 020 02075 02167 02459 02909 0-3526 04295 05202 06238 07391 08649 1-0000
010 040 04941 0-5007 05197 05503 05913 06418 07006 07669 08396 09176 1-0000
010 100 08683 08701 0-8752 0-8833 (0-8942 09075 09229 09401 09590 09790 1-0000
001 01000 00783 01051 —00340 —0-0837 —0-1016 —0-0675 00393 02392 05526 10000
002 00630 00481 00140 —0-0228 —0-0465 —00405 00112 01250 03168 0-6032 1-0000
020 005 00138 00117 00110 00193 00447 00951 01785 03027 04758 07055 1-0000
010 00405 00470 00679 0-1053 01611 02375 03365 04603 06107 07899 1-0000
020 01934 02024 0-2288 0-2722 0-3320 04075 04981 06032 07224 08548 1-0000
040 04650 04716 04908 0-5219 05839 06160 06775 07474 08251 09095 1-0000
100 08412 08432 08493 (0-8588 0-8720 0-8879 09064 09273 09500 09744  1-0000
001 01040 00818 00289 —0-0336 —0-1188 —0-1051 —00724 00337 02339 05451 1-0000
002 00680 00522 00159 —0-0241 —0-0510 —00481 00013 01141 03070 0-5967 1-0000
030 005 00206 00172 00127 00160 00360 00815 01613 02841 04590 06947 1-0000
010 00417 00468 00640 0-0963 0-1468 02185 03144 04375 05908 07773  1-0000
020 01807 0-1888 0-2131 02537 0-3107 03841 04740 05805 07036 0-8434 1-0000
040 04360 04424 04615 04925 05348 05882 06519 07256 0-8085 0-9001 1-0000
100 08098 0-8123 0-8194 08306 08460 08648 0-8868 09117 09391 09687 1-0000
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F1G. 1. The temperature distribution in the flat plate (Galer-
kin method).

5.2. Variational method. The first form of variational
integral
In this case, we obtain the relations following the
existence of an extremum of the variational integral
considered

ey, @
oY = 3, (1—wry3,
J;) {01:0 55[ -k ) ]} K1)

x39;-dé=0 [i=0,1] (34)
where
90— =(&*—1)04,
9
03 = — =(E3—1)64,.
Iy (&’ —1)04,

The approximate solution has the same form as in
equation (29).

Making use of equation (34), a similar computation
is carried out as in Section (5.1), yielding the set of
differential equations

1o Aol =k )+ 51—k ) A +x
x [3% Ao Ao+ 13540 A1 +136A0 Ar + 1554, A1]
+3A40(1 =) +34:(0 =K )P +r, (1= k)

x [f245+PA0 A, +347]
+ri[6o 434, +8%3 4047 +155

35)

o A3+ 488 43] = 0;
2. Aol =r ) +15 A (1—
x [26Ao Ao +1%6A0 A1 +156 Ao A1 + 4541 A1]
+3A0(1—w ) + 34,1 —k ) +x,(1 —Ky)
x [343+332A0 A, +55A7]
+x3[$02A43 A, +353- AT Ao+ EA3+£HA43] =0

K1) tK,

BOGDAN KRAJEWSKI

The initial values are obtained in a similar way as in
Section 5.1, that is

i Ao(0) = —3-4608;
f [3,~3,]* d¢ = minimum
o A1(0) = 430719,

The numerical results are represented in Table 2.

5.3. Variational method. The second form of variational
integral
In the third variant of our problem, the relations
derived in Section 2.2 will be used.
Substituting in (26) the relation (21), we obtain the
heat equation in the region considered in the form

e 1 0 0 (37)
e J(1-2x,0) éF,
the boundary conditions
4]
=20, 0 =1-2 (38)
¢ le=0 e=1 2
and initial condition
0,£0=00<¢<1,F=0. (39)

The approximate solution, being obtained using the
procedure described in Section 3, has the form

0, = (1— %)+Ao(g“2~l)+A1(é3—1), (40)

Making use of the relation (18), we obtain

11020 1 00,
L — d 0
L[%Z wwn@)wj¢‘é

[i=01] (41)

where

00,
@ = TA[

The initial values for a set of ordinary differential
equations can be obtained as follows:
F0=0]

Jl[(] - J(1-2x,0,) > =0
0 0/ J(1-26,0,)
déE=0 (42)
1 3
/ € -1
1-J/(1-2x,0, S R -
LK vt “)w)wumami
dé=0. 43)
The numerical results are represented in Table 3 and
Fig. 2.
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Table 2
¢
Ky Fo
0-0 01 0-2 03 0-4 05 0-6 07 0-8 09 1-00
002 00580 00438 00117 —0-0224 —0-0430 —0-0343 00195 01341 03253 06086 100
005 00085 00077 00101 00228 0-0530 0-1077 0-1942 03196 04909 07153 100
< =01 0-10 00406 00484 00724 01140 0-1744 0-2548 (03564 04805 06283 08011 100
! 020 02072 02169 02450 02904 03521 04289 05197 06233 07386 0-8640 100
040 04939 05005 05195 05501 0-5910 0-6415 07004 07667 08394 09175 1-00
100 08683 08700 08751 0-8833 (8941 09074 0-9229 09401 09590 09790 1-00
002 00633 00482 00138 —0-0235 ~0-0475 —0-0420 0-0095 0-1231 03152 06021 100
005 00148 00126 00113 00190 0-0438 00936 01765 03006 04738 07043 100
= 02 010 00409 00472 00678 01047 0-1601 02361 03348 04584 06091 07889 100
t 020 01931 02020 02284 02716 (0-3312 04066 04971 06023 07215 08543 1-00
040 04645 04711 04903 05213 05633 06155 06770 07470 08247 09093 100
100 08411 08431 08492 08589 08718 08878 09063 09272 09499 09743  1:00
002 00683 00524 00159 —00244 —0-0517 —00491 00001 01128 03058 05959 100
005 00211 00175 00126 00155 00350 00800 01594 02822 04573 06936 100
e =03 010 00420 00469 00639 00959 01460 02174 03130 04360 05894 07764 100
! 020 01805 01886 02128 02532 03100 03833 04732 05796 07029 08430 100
040 04357 04421 04611 04920 05344 05877 06515 07251 08081 08999  1-00
100 08097 08122 08192 08306 08458 08646 08867 09116 09390 09688 100
Table 3
¢
Ky F()
0-0 01 02 03 0-4 05 06 07 0-8 0-9 1-00
002 00595 00456 00139 —0-0201 —0-0414 —0-0347 00150 01240 03098 05931 100
005 00067 00064 00100 00238 00545 0-1087 01933 (03158 04845 07088 100
o =01 010 00384 00466 00715 01140 01751 02556 0-3569 04802 06272 07998 100
! 020 02063 02161 02445 02903 03523 04292 0-5200 06236 07389 0-8647 1-00
040 04943 05009 05201 0-5507 0-5917 0-6421 07009 07671 08397 09177 100
100 08700 08717 08767 08848 0-8955 09086 09239 09409 09595 09793 100
002 00642 00498 0-0168 —0-0195 —-0-0438 —0-0416 00024 0-1047 02849 05697 100
005 00097 00087 00103 00208 00472 00963 0-1755 02935 04605 06897 100
r = 02 010 00354 00428 00655 01048 01620 02385 03364 04580 06064 07853 100
! 020 01908 02002 02275 0-2719 03323 04081 04987 06035 07222 08545 100
040 04665 04732 04926 05238 0-5659 06180 (06793 0-7489 0-8261 09101 1-00
100 08480 08500 0-8558 0-8651 0-8775 0-8928 09105 09304 09522 09755 100
002 00689 00540 00197 —0-0186 —0-0460 —0:0479 —0:0097 00856 02592 05437 100
005 00127 00111 00107 0-0182 00404 00845 01582 02710 04350 06680 100
= 03 0-10 00328 00394 00601 00962 01494 0-2218 0-3158 04349 0-5837 07687 100
! 020 01763 01852 02114 02540 03125 0-3867 04764 0-5819 07037 08425 100
040 04394 04461 04657 04972 0-5399 0-5932 06565 07292 08110 09014 100
100 08251 08273 08339 0-8444 083586 08760 0-8963 09192 09443 09714 100
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F1G. 2. The temperature distribution in the flat plate (the
second form of variational integral).

6. FINAL REMARKS

Usually the unsteady heat flow problems are con-
sidered by the assumption that the thermal properties
are constant. This assumption has been omitted in the
present paper.

It has been shown that this type of problem can be
treated as a variational problem. Two different forms
of the variational integral have been constructed. The
choice of a suitable form is dependent upon the
boundary conditions. The calculation flow has been
illustrated on the basis of three numerical examples.
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